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Abstract An optimal design teehniljue developed earlier for axisymmetric plates and circular
cylindrical shells is accommodated for shallow spherical shells subJected to uniform transverse
pressure. Material of the ,hells IS assumed to be rigid plastic obcying the von Mises yield condition
and the associated deformation law. The post-vield behaviour of the shells is taken into account.
The weight minimIZation IS performed under the condition that the maximal deflection of the shell
of variable thickness COinCIdes with the deflection of the reference shell of constant thickness. The
problem is transformed mto a non-linear boundary v',Iiue problem which is solved numerically.
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I INTRODliCTIO,,"

The optimal design of thin \\alled shell struct ures has had the attention of many investigators
during the last decades. Thc comprehensive surveys of this topic are presented by Kruzelecki
and Zyczkowski (191\5). also by Lellep and Lepik ( 191\4). Since the minimum weight designs
employ the material resources in the most efllcient manner one may not neglect the plastic
deformations which might occur during the exploitation of the optimized shell structures.
This involves the need for the optimal design of plastic plates and shells. The early works
on optimal design of plastic structures have used the geometrically linear concept, i.e. the
designs have been determined for the given load carrying capacity. However. the work by
Mroz and Gawecki (1975) revealed an unfavourable ctTect of the designs of this type-they
might be sensitivc to geometrical changes the structures undergo in the post-yield range.
This means that the post-yield stiffncss of the plate of variable thickness is smaller than
that of the plate of constant thickness. Thus thc geometrical changes should be taken into
account in the statement of the problem when studying plastic shells of minimum weight.
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Fig. 1. Shell geometry.

Different approaches to the optimization of geometrically non-linear structures have
been discussed by Lellep and Lepik (1984), Mroz and Gawecki (1975) and Lellep (1991).
Making use of the variational methods of the optimal control theory in Lellep (1985) and
Lcllep and Sawczuk (1987), an optimization technique is developed for plastic cylindrical
shells which operate in the post-yield range. Material of the structures is assumed to obey
the Tresca yield condition. Shallow spherical shells of Tresca material have been studied
by Lellep and Hein (1993) assuming the thickness of the cap is piecewise constant. Optimal
design of geometrically non-linear rigid--plastic annular plates and cylindrical shells of von
Mises material has been investigated by Lellep and Majak (1992, 1993) transforming the
problem into a boundary value problem.

In the present paper a numerical procedure will be developed for minimization of
the weight of plastic shallow spherical shells manufactured from a von Mises material.
Geometrical non-linearity, i.e. moderately large deflections will be taken into account.

2. FORMCLATION OF THE PROBLEM AND THE GOVERNING EQUATIONS

Let us consider a spherical cap of radius A subjected to the uniformly distributed
internal pressure of intensity P (Fig. I). The internal edge of the shell is free whilst the
external edge of radius R may be pinned or simply supported. The radius of the central
hole is denoted by Q.

It is assumed that the shell wall is of ideal sandwich type, H being the constant total
thickness. However, the thickness of carrying layers h is variable. Thus the yield moment
Mo = (J"hH and the yield force No = 2(Joh are also functions of the radius r. Here (Jo stands
for the yield stress of the material of the carrying layers. The core material is assumed to
be mildly resisting to the tangential shear stresses only.

Let us assume that the radius of the outer edge of the shell is small in comparison to
the radius of the shelL i.e. R « A. In this case the material volume of the carrying layers

v= IhdS,

where S is the central surface area, may be expressed as

~R

V=211J hrdr.
a

(1)

(2)

The approximation (2) of the exact material volume [eqn (I)] of shallow spherical
shells is widely used in the literature. It will be employed in the present study also. We are
looking for the minimum of eqn (2) under the requirement that the maximal deflection of
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the shell W(a) coincides with the maximal deflection of the reference shell of constant
thickness h*.

It is assumed that the thickness of the carrying layers is constrained above. Thus, at
each point the restriction

h-ho ~ 0 (3)

is to be met. Here ho is a given constant. It is worthwhile to mention that the restriction (3)
is imposed on the stress-strain state of the shell in order to get a unique solution of the
optimization problem in the class of continuous functions. The optimal solution does not
exist when eqn (3) is omitted in the statement of the problem. A similar situation occurred
in the case of axisymmetric plates as previously shown by the authors (Lellep and Majak,
1993).

Let us assume that the strains are small but the displacements are finite. Thus the basic
equations of the von Karman non-linear shell theory are applicable. The strain components
corresponding to the von Karman theory may be presented as [see Sawczuk (1982)]

= dU + -"- ~W+ ~. (d W)2
E I dr A dr 2 dr '

U
(;0 =-. r '

11:1 "2 =
I dW
r dr •

(4)

£10 £2 being the membrane strains and K I , K2 the curvatures. Here Wand U stand for the
transverse deflection and meridional displacement, respectively.

The equilibrium equations which take small configuration changes into account may
be written as

where N I , N 2 stand for the membrane forces and M I , M 2 are the principal bending moments.
The material of the shells under consideration obeys the von Mises yield condition and

associated deformation law. Parametrical equations of the yield surface in the space of the
generalized stresses are derived by llioushine (1957). However, the exact yield surface is
quite complicated. This involves the need for reasonable approximations of the exact yield
surface corresponding to the von Mises yield condition.

In this paper the approximation of the yield surface which corresponds to the satis
faction of the original yield condition on the average will be utilized. The latter surface may
be expressed as

(6)

where M o and No stand for the yield moment and yield force, respectively. It was shown
by several authors [see, for example, Robinson (1971) ; Haydl and Sherbourne (1979)] that
the non-linear approximation (6) of the exact yield surface gives reasonable results in the
limit analysis of plastic plates and shells.

The associated deformation (gradientality) law states that

i'lD
K, = i.-;:.--;

C1'.l,
i = I, 2 (7)

if the deformation theory of plasticity is employed. It was shown by Budianski (1959)
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and Panter and Martin (1972) that the deformation theory would provide a consistent
approximation to the incremental solution. Here;' is a non-negative scalar multiplier and
<D is defined by eqn (6).

It is worth mentioning that Ie = 0 in eqn (7) if <D < O. This reflects the matter that the
strain components [eqn (4)] must vanish if the stress-state corresponds to an interior point
of the closed convex surface [eqn (6)]. If, however, <D = 0 the multiplier Ie is a non-negative
function.

It is easy to recheck that the relations (7) could be put into the form

(8)

Eliminating the strain components from the system [eqns (4) and (8)] one obtains the
equations

(9)

It appears to be convenient to utilize the following non-dimensional quantities:

r a R NI.2 M1.2
p= A' "I. =- fJ = A' n1.2 - , m1.2 - ,

A' N* M*

U W h PR 2 H
(10)

U = A' IV = A' l' = h--;" p = 2M*' s = 2A'

Here M *' and N* stand for the yield moment and yield force, respectively, for the reference
shell of thickness h*.

lJ sing the notation (10) and assuming that Ie -:t 0 which in turn implies that <D = 0 one
can put the yield condition (6) into the form

(11)

Note that the case J. = 0 is associated with the non-deformed shell since according to
eqn (8) ':1 = I:, = 1\1 = h:2 = 0 in this case.

Making use of eqn (10), the equilibrium equations (5) and the set [eqns (9)] may be
put into the form

1/ =

z(2mj -m2)

p(2m 2 -m l )'

1 ' zs(2n l -n 2 )

- oZ- - pz - (2 ) ,- P m 2 -m l

(12)

where primes denote the differentiation with respect to p and z = w' is an auxiliary variable.
It is easy to recheck that when eliminating Ie from eqn (9) one obtains in addition to

eqn (12) the relation
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The inequality constraint (3) will be treated as an equality constraint

obeing a control variable and 1"0 = ho/h*.
The boundary conditions may be expressed as

at the inner edge, and as

ml (fJ) = 0, w(fJ) = 0, u(fJ) = 0

3697

(13)

(14)

(15)

(16)

at the outer edge, provided the outer edge of the shell is hinged. If, however, the outer edge
is simply supported and the radial tension is fixed the condition u(fJ) = 0 in eqn (16) must
be replaced by the requirement II] (fJ) = II, II being a given constant.

3. OPTIMALITY CONDITIONS

The problem posed above consists of the minimization of the functional (2), taking
the differential restrictions (12) and relations (13)-(14) into account. In order to establish
the necessary optimality conditions let us introduce the following augmented functional

+ cp(lI~ -lillie +Il~ +m~ -mime +m~ _ve) + ~[u(2me -m,) +SZ(2112 -II,)]

+/1(1"-1"11 +fn }dr. (17)

Here the variables t/JI"'" t/Js stand for the adjoint variables whereas cp, ~, I] are
certain Lagrangian (non-constant) multipliers. The quantities II" m" W, Z and u are the
corresponding state variables whose derivatives stand on the left side of the state equations
(12). The rest variables lie' me, v are considered as the control functions.

Note that the state variables are assumed to be continuous at each p E (ex, fJ). However,
the controls may have finite discontinuities at certain points of the interval (ex, fJ).

Calculating the variation of eqn (17) one obtains the equation

.. . . . (2m l -me) bz zY4(3m2bm] -3m, bm2) s; ,

+YJ OIl' -.1'J oz+r4 oz -.1'4 2 ) - 2 +Ys uU
r( m2 -m l r(2m2-md

. . srd211 1 ~IlJ 6z sYsz(2 611, -611 2 ) sYsz(211] -112)
+ I')ZO':+ 1'5rO.:+ + + 2

. . r(2me-m]) r(2m2- m l) r(2m2 -m l )

x (-26m 2 +6m[) + cp[(211] -lie) bll] + (2112 -II]) bll2+ (2m, -m2) bml

+ (2m e-m l ) 6me-2I'b('] + ~[(2m2 -m]) 6u+2ubm2 -ubm] +S(2112 -Ill) bz

+sz(26I1e -()III)] +I](bl"+2&b8) }dr = O. (18)

SAS 32-24-K
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The arbitrariness of the variations of controls v, eand n2, m2, respectively, leads to the
equations

and

lJe = 0, p-2cpv+1J = 0

According to eqn (18) the adjoint set may be written as

(19)

(20)

t/J j t/J 0 2szt/J 5
t/J'j = - + ~(z+p)+ (2 ) +cp(2n j - n2)-/lSZ,

p S P m2 -m j

.J.' t/J2 z(st/Js(2nj -n2)- 3m2t/J4) 2 )
'1'2 = - + ,+cp( m j -m2 -flU,

p P(2m2 -ml)"

t/J~ = 0,

,n j t/J4(m2-2m j )+st/Js(2n j -n2)
t/J4 = -t/J2+ (2 ) +t/J5(P+Z)-t/J3+/ls(2n 2-n l ),

s P m2 -m j

t/J's = /l(2m2 -m j) (21)

and the transversality conditions corresponding to the boundary conditions (15) and (16)
become

(22)

It is worth noting that in the case where the radial tension is fixed at the outer edge of
the shell, i.e. n j ([3) = n, u([3) :j; 0, in eqn (22) t/JI([3) :j; 0, but t/J5([3) = o.

It follows from eqn (19) that either e= 0 or IJ = O. In the first case according to eqn
(14) and (19) v = Va and

IJ = 2cpva- p.

If, however, IJ = 0, e i= 0, eqn (19) yields

p
v ==-

2cp'

Now the relation (14) shows that v < Va.

Making use of eqn (20) one can define

and

(23)

(24)

(25)
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3sz2

-t/J,U+t/J2SZ+ J(sn 1t/JS-m,t/J4)
(2m2 -m,)-

<P = ----=----'--~----'------:::---

SZP[2m2-m 1 + :z (n j - 2n2) ]

Thus according to eqns (24) and (26) one has

3699

(26)

(27)

if v < Vo.

The equations (II) and (13) combined with eqn (27) permit the determination of the
unknown functions n2, m2 and v. When defining from eqn (13)

n2 = ~ [ n I - :z (2m 2 - m 1) ]

and substituting eqns (27) and (28) into eqn (II) one can obtain the equation

(28)

u2(2m 2_m,)2

4S2
Z

2

which may be used for determination of the quantity m2'
However, in certain regions the inequality v < Vo may be violated. In these regions

eqn (27) must be omitted. Now the relations (II) and (13) could be used for determination
of the controls m2, n2 bearing in mind that v = vo. Note that eqn (28) holds good but eqn
(29) must be replaced by the equation

(30)

4. NUMERICAL RESULTS

The optimization problem set above could be transformed into the boundary value
problem with eqns (12) and (21) and boundary conditions (15) and (22), provided v < Vo

everywhere. Now, when integrating eqns (12) and (21) one has to take into account the
Lagrangian multipliers (25) and (26) as well as the equations for the determination of the
control functions (27)-(29) at each mesh point. However, the problem is more complex
because in certain regions v = Vo.

The whole integration domain is divided into two subdomains Do and D I, It is assumed
that for pEDo, v == Vo and for pE D" v < vo. Note that both of these domains might consist
of more than one interval. However, the calculations carried out for the considered cases
of the boundary conditions showed that Do and D, comprise a unique interval (they are
both the connected domains). The latter makes the solution procedure simpler. When
integrating eqns (12) and (21) in the region Do, one has to substitute the relations (27) and
(29) with v = vo and eqn (30), respectively. The regions Do and D 1 are matched with each
other so that the boundary conditions (15) and (22) as well as the continuity requirements
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Fig. 2. Load--<leflection relations for the shells of constant thickness.

imposed on the state variables n l • fill, \I', ::. u and adjoint variables l/JI' ... ,l/Js at the
boundaries of the domains are satisfied.

The corresponding boundary value problems are solved with the modified adjoint
operators method. The sets of differential equations are integrated with the aid of the 4th
order method of Runge-Kutta.

The calculations are realized in the following manner. In the first stage of the numerical
procedure the shell of constant thickness is studied assuming that the maximal deflection
Wo is unspecified. Putting v = J and solving the boundary value problem with eqns (12)
making use of eqns (II) and (13) the stress-strain state of the shell of constant thickness
could be determined for each value of the load intensity p. Thus, in particular, one obtains
the load-deflection relation 11'0 = \I'o(p) for the shell of given shape. Naturally, the relation
depends on the quantity n, if u(fJ) #- 0 and n1([3) = n.

In the final stage of calculations the values of P and Wo are fixed conformably to the
relation It'o = wo(p) specified in the previous stage. Here p ? Po, Po being the load carrying
capacity of the shell. For given values of p. 11'0, 1'0 the boundary value problems with eqns
(12), (15), (21), (22) and (27)-(30), are solved to obtain the optimal thickness distribution
for the shell under consideration. At the same time one has to check that the requirement
v(p,p)? r(p, Po) is satisfied [Lellep and Majak (1993)].

In order to assess the eventual saving of the material by the utilization of the optimal
design let us introduce the following coefficient

(31)

where v stands for the optimal thickness of the shell. Evidently, the economy coefficient
(31) is equal to the ratio of the material volumes of the shells with variable and constant
thickness h* respectively.

The results of calculations are presented in Figs 2-10 and in Tables 1-2. Figs 2-10
correspond to the shells with hinged outer edge. In this case the radial displacement vanishes
at the edge, i.e. u(fJ) = O.

The load-deflection relations for shells hinged at the outer edge and free at the inner
edge are presented in Fig. 2. Here 'X = 0.04; [3 = 0.1 ; s = 0.05 and Po #- 0, because elastic
deformations are neglected. The solid line in Fig. 2 is obtained for the shell of von Mises
material (present solution) whereas the dot -dashed line corresponds to the solution
obtained by the method of Erkhov (1975). By Erkhov (1975) the original von Mises yield
condition is transformed into a piece-wise linear condition which consists of two hexagons
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Fig. 3. Optimal thickness of a cap hinged at the outer edge.

lying on the planes of membrane forces and moments, respectively. The dimensions of these
hexagons are coupled with each other so that m 2 + n2 = C, where 0.75 < C < 1.09. The
upper bound prediction (dashed line in Fig. 2) is obtained making use of the method
suggested by Jones (1969) for circular plates. The dotted line in Fig. 2 corresponds to the
approach developed by Kondo and Pian (1981). Note that different theoretical predictions
do not differ substantially from each other.

The optimal thickness distribution is presented in Fig. 3 for different values of the
geometrical parameter s. Here 1'0 = 1.1. Figs 3-10 correspond to the case of rx = 0.04 and
fJ = 0.1. It is worthwhile to emphasize that the optimal thicknesses (solid lines in Fig. 3)
are associated with the limit loads. respectively. This implies that the same optimal thickness
might be obtained when solving the minimum weight design problem for load carrying
capacity. However this is not the case for more shallow shells (if the radius of the shell
tends to infinity and s tends to zero). This result is inconsistent with those obtained by the
authors for annular and circular plates (Lellep and Majak. 1992), also with the corollaries
by Mroz and Gawecki (1975), and Save ct al. (1989).

The dashed line in Fig. 3 is calculated as the solution of the present problem for
Wo = 0.3 and Ipl = 1.428; s = 0.0025. Evidently. the material volume of the latter design is
less (c = 0.895) than that corresponding to the solid line (e = 0.924). However, the solution
presented by the dashed line in Fig. 3 must not be called optimal since the equality
v(p,p) ? v(p,Po) is violated for pE (0.75; 0.93). The last inequality is necessary in order to
ensure the safety of the design established above [see Lellep and Majak (1993)].

The values of the economy coefficient defined by eqn (31) are accommodated in
Table 1. Here the values of the pressure intensity correspond to the load carrying capacity.
Thus the material saving is less for deeper shells and greater for more shallow caps (in the
range of considered shell parameters).

In order to be convinced of the safety of a design established above one has to carry
out the stress-strain analysis for the shell of variable thickness in the post yield point range.
The load-deflection relations for the shells with thicknesses presented in Fig. 3 are shown
in Fig. 4. Here the solid lines correspond to shells with variable thicknesses whereas dashed
lines are associated with the reference shells of constant thickness. The results indicate that
the deflections of the shells of variable thickness are less than those obtained for the
reference shells of constant thickness for the common value of the pressure intensity.

Table I. Economy of the design of a
spherical cap hinged at the outer edge

(1'0 = 1.1)

0.0025 0,(l0375 0.005

p 1.074
0924

1.365
0936

1688
0.941
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Fig. 4. Load-deflection relations for the shells of variable thickness.
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Fig. 5. Optimal thickness distributions corresponding to the different values of vo.

Evidently, economy of the design established depends on the upper bound imposed
on the thickness. The optimal thickness distributions associated with different values of Vo
are presented in Fig. 5 (solid lines). The dashed line in Fig. 5 could be obtained when
minimizing the functional

The cost function (32) may be considered as an approximation of the functional

/0 = maxv
p

(32)

(33)

which is not differentiable. Although eqn (32) has no physical grounds it has been used in
the optimal design of plastic shells [see Kruzelecki and Zyczkowski (1985); Lellep and
Lepik (1984) ; Lellep (1991 )]. Fig. 5 points out that the cost functions of type (32) with the
integrand 1/, where k ? 2 could lead to reasonable results even in the cases when the optimal
solution of the unconstrained problem with the functional (2) tends to infinity at certain
points.
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Fig. 7. Radial force.
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Fig. 8. Hoop moment.

The values of the economy coefficient corresponding to Fig. 5 are presented in Table
2. The last column in Table 2 corresponds to the optimal solution for the problem with the
cost function (32), the previous ones to the minimum weight problem with different values
of the upper bound on the thickness. Here s = 0.005, p = 1.688. It is clear from Table 2
that the greater is the upper bound the greater is the amount of the material which can be
saved. It is relevant to remark here that the cost function (32) yields satisfactory results in
spite of its formal origin.

The stress resultants n" n2' m l , m2 are plotted in Figs 6-9 and the radial displacement
in Fig. 10. The solid lines in Figs 6-10 correspond to the shell with optimal variable

Table 2. Economy of the design with different upper bounds
imposed on the thickness

e

1.3

0.879

1.5

0.850

1.7

0.832

2.0

0.816 0.880
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Fig. 9. Radial moment.

Fig. 10. Meridional displacement.

thickness whereas the dashed lines are associated with the reference shell of constant
thickness. Here s = 0.0025; Do = 1.1. The optimal thickness is presented in Fig. 3. The
numerical predictions presented in Figs 6-10 are obtained when solving the direct problem
for the shell of variable thickness for different levels of the deflection. The curves labelled
with I in Figs 6-10 are obtained for the limit load (ipi = 1.074; Iwol = 0) whereas curves 2
and 3 correspond to the deflections IWol/4s = 0.4 (ipi = 1.555) and IWol/4s = 0.8
(ipi = 2.091), respectively.

Note that the hoop force distributions in the optimal structure differ substantially
from those corresponding to the reference shell of constant thickness. However, the dis
crepancies in the distributions of the radial stresses and displacements are less remarkable.
The same phenomenon was observed in the case of axisymmetric plates, as well [see Lellep
and Majak (1993)].

5. CONCLUSIONS

An optimal design method has been developed for shallow spherical shells made of an
ideally rigid-plastic material. Material of the shells obeys the von Mises yield condition
and associated deformation law. The calculations carried out for shells ofconstant thickness
have been compared with the solutions obtained under different assumptions and approxi
mations of the yield surface. Since the theoretical predictions are quite close to each other
the use of the present material concept appears to be justified.

Geometrical non-linearity has been taken into account when studying the behaviour
of the shells. It appears from a number of comparisons made in this paper that the
post-yield stiffness of the shell of variable thickness is greater than that of the reference
("equivalent") shell of constant thickness. This holds good in both cases, if the outer edge
is supported so that u({3) = 0 and so that u({3) 1" 0, n1({3) = n, respectively. In the latter
case, loading with relatively small radial tensions must be disregarded. Here the variable
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thickness may be defined as the optimal thickness corresponding to the minimum weight
design for load carrying capacity. Thus the moderately shallow shells where the ratio R; A
is not very small are quite favourable structures for the optimization, as the minimum
weight designs established for the limit loads are not sensitive to geometrical changes. Note
that the behaviour of circular and annular plates of variable thickness is unfavourable in
this sense [see Mr6z Z and Gawecki A (1975) ; Lellep and Majak (1993)]. The only exception
is the plate subjected to lateral pressure and (not very small) radial tension. Thus the
character of the behaviour of the optimized shell depends on the type of the structure, on
the material concept and on the loading and support conditions.
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